Effect of Surface Modification on the In vitro Protein Adsorption and Cell Cytotoxicity of Vinorelbine Nanoparticles
نویسندگان
چکیده
CONTEXT Nanocarriers possessing long-circulating abilities could take advantage of the pathophysiology of tumor vasculature to achieve spatial placement. To attain such qualities, the drug carriers should possess suitable physicochemical properties such as size and surface hydrophilicity. AIM The aim of this study was to prepare poly(ε-caprolactone) nanoparticles (NPs) loaded with vinorelbine bitartrate (VB) and to modify its steric properties using polyethylene glycol and poloxamer. Furthermore, the influence of surface modification of NPs on their physicochemical and cell interactive properties was evaluated. MATERIALS AND METHODS NPs were prepared by double emulsion solvent extraction-evaporation technique. The prepared NPs were evaluated for their physicochemical properties, in vitro protein adsorption and cell cytotoxicity. RESULTS AND DISCUSSION The NPs were <250 nm with an entrapment efficiency ranging between 40% and 52%. The zeta potential of the NPs varied from -7.52 mV to -1.27 mV depending on the surface modification. The in vitro release studies exhibited a biphasic pattern with an initial burst release followed by controlled release of the drug over 72 h. The protein adsorption studies revealed that the ability to resist protein adsorption was influenced by the concentration of surface-modifying agents and the amount of proteins available for interaction. The surface-modified NPs produced cell cytotoxicity comparable to free VB at higher concentrations owing to sustained release of the drug into the cellular environment. CONCLUSION The results emphasize that surface modification of nanocarriers is an essential and effective tool to dodge opsonization and phagocytosis in the physiological milieu.
منابع مشابه
Investigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells
In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...
متن کاملSome studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles
In the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigation...
متن کاملCytotoxicity effect of gold nanoparticles against a rabbit model of retinoblastoma
Introduction: Retinoblastoma is a malignant tumor in children. The goal of retinoblastoma treatment is to maintain vision and minimize side effects. In this study, the toxicity of the gold nanoparticle safety in vitro was investigated on an eye tumor of retinoblastoma under in vivo conditions. Materials and Methods: For the evaluation of the toxicity of gold nanoparticles using MTT test after 4...
متن کاملSome studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles
In the present investigation surface modification of silica nanoparticles by alumina was carried out by sol-gel process. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) confirmed the synthesis of silica and the surface modification as alumina is anchored to silica surface. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) investigation...
متن کاملEffects of Surface Chemistry Modification using Zwitterionic Coatings on the Surface of Silica Nanoparticles on Prevention of Protein Corona: A Test Study
Objective(s): The purpose of this study was investigation of the protein corona formation on the surface of zwitterionic nanoparticles when they exposed to bio-fluid like human plasma.Methods: Silica nanoparticles with zwitterionic surface coating, cysteine and sulfobetaine were employed as zwitterionic ligands, were synthesized and characterized in terms of physicochemical properties. To...
متن کامل